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Abstract — Semantic segmentation (SS) provides the meaning 

of visual scenes, thus being a key stage for navigation and 

environment’s perception. This paper presents a solution for SS 

compatible with assistive wearable systems equipped with color 

and depth cameras. In order to ensure a compact and robust 

description of input color-based images, both 2D and 3D features 

are extracted at superpixel level, after correcting the 

displacements of the camera by means of adequate rectifications. 

Random Forests (RF) are called for solving the classification 

problem. In this context, this paper introduces a multilayer RF-

based classifier, including a separate layer for label correction. 

Additional two other correcting methods are proposed for the 

first layers of the classifier, i.e. a fast method investigating the 

majority label around each object, and several customizations of 

the graph cut algorithm using convenient cue weights. The 

performance of the suggested approach is experimentally verified 

on diverse urban street scenes. 

Keywords — semantic segmentation; assistive wearable system; 

classification; 3D features; Markov Random Fields. 

I.  INTRODUCTION  

Semantic segmentation (SS) maps a top-level 

understanding of images to pixel level. This interpretation is a 

valuable asset for refining the decisions in a large variety of 

applications, from medical imagistic to autonomous driving. 

This paper discusses the SS integrated in Sound of Vision 

System (SoV) - a wearable assistive equipment providing 

acoustic and tactile description of the surrounding 

environment [1]. SoV is meant to help the navigation of 

visually impaired persons with levels 3, 4 or 5 of visual 

deficiencies (defined by the World Health Org.), who are 

assisted by a white cane, a guiding dog or a guiding person.  

In this context, SS is used in real time, for understanding 

the layout of environmental scenes, in order to map the most 

important visual elements into the haptic and audio 

representations, and send necessary alerts. Working with street 

scenes poses some difficulties, because the background is non-

uniform and every class is instantiated by samples with a large 

range of colors, shapes and postures, the appearance being 

significantly affected by 3D rotations, weather conditions, etc. 

Additionally, in the case of SoV, rectification becomes very 

challenging, due to expected huge camera displacements 

caused by the movements of the head/body. Also, this 

application imposes critical safety requirements (i.e. any 

potential misclassifications should not put the visually 

impaired person in danger), as well as critical real-time 

constraints (derived from the temporal characteristics of the 

acquisition system, from the dynamics of the impaired person 

and surrounding objects, and from the computation time 

requested by all the processes running on SoV).  

For SS, three broad current research directions have been 

depicted in [2]. They refer to the type of feature extractor used 

for solving the corresponding classification problem, and, in 

relation to this step, to the method used for improving the 

consistency of the labels. Thus, the methods can work with 

hand-engineered features, learned features (e.g. extracted by 

convolutional neural networks) or features provided via 

weakly supervised learning (like multiple instant learning). 

The accommodation of (partially) pre-trained models becomes 

less effective for SS in SoV, especially because the 

displacements of the mobile camera lead to many invalid (less 

confident) pixels in every frame. Therefore, SS is solved with 

hand-engineered features extracted at superpixel level, which 

could be effective for the available limited image database.  

Commonly, these types of methods solve the 

classification by fusing 2D and 3D features, and then apply 

correction algorithms based on Markov/Conditional Random 

Fields (MRF) for improving the consistency of labeling [2]. 

Random Forest (RF) is perhaps the most adopted classifier. In 

[3], RF works with features based on color and discrete cosine 

transform texture. A fusion between 2D and 3D features (like 

relative height from the ground, surface normal vector, nearest 

distance to the camera and re-projection error) is presented in 

[4]. Some features describe the similitude between pairs of 

neighbor superpixels. [5] uses a 3D feature related to the 

estimated normal direction and some 2D features obtained 

from superpixel geometry and color distribution; if the 

superpixel is not validated by at least five 3D points, the 3D 

feature is set to a predefined constant, for robustness reasons. 

Other 3D features are suggested in the following sections. 

Classification is often solved for superpixels, because 

they provide a region-based compression of the image, which 

allows compact and robust feature-based descriptions. For SS, 

the superpixels must not overlay the boundaries of the objects. 

This requirement translates into keeping the superpixels 

enough small. Alternatively, this limitation could be solved by 

means of correction algorithms called after SS, for improving 

the homogeneity of the labels. Based on valuable theoretical 

results [6] and numerous experimental demonstrations, graph 
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cut corrections are very popular. Their limitations are mainly 

related to the involved computational time. An interesting 

version of MRF is introduced in [7]; the features are fused via 

energy terms that describe the color and the depth conditional 

probabilities. Correction is also solved by aggregating multiple 

models corresponding to different superpixel maps [8]. In this 

paper, corrections at superpixel level offer adequate precision 

for SS, their main role being to adjust (small) incorrectly 

labeled objects and to validate the results of classification. 

This paper proposes a layer-based classifier equipped with 

different label correction strategies. Each layer refines/corrects 

the classification done by the previous layer, thus augmenting 

the understanding of the image and the confidence in results. 

The layer-based design of the classifier is mainly motivated by 

the idea of separating the classification problem in simpler 

tasks, which usually is helpful for the overall accuracy. 

Additionally, the layer-wise improvement of SS is helpful for 

solving specific safety and real-time constraints imposed by 

the application. The first two layers of the classifier consider 

2D and 3D hand-engineering features extracted at superpixel 

level. 3D features embed information from the previous 

frames, thus making the feature extraction more meaningful.  

Three main innovative correcting strategies are introduced 

for supporting label consistency. One is based on a RF 

classifier (included in the last layer) which provides additional 

alternate labels with corresponding confidence scores. This 

relabeling is based on features extracted at object level, for the 

objects defined in the segmented image received from the 

previous layer. The other two techniques are available for the 

first layers of the classifier and ensure the elimination of small 

objects, as well as a refinement of objects’ borders. One of 

them one uses a faster majority voting replacement. The other 

one is based on the graph cut applied with cue weights relying 

on the available confidence scores or objects’ areas. As 

detailed in the next sections, these corrections permit adequate 

tuning, in compliance with safety and real-time constraints. 

This paper is organized as follows. Section II describes 

SoV architecture, as basis for discussing the limitations 

induced by the hardware and the particularities of the available 

data. Details about the feature extractor and the suggested 

layer-based architecture are presented in Sections III and IV, 

respectively, while Section V explains the label correcting 

procedures. Experimental results illustrating the performance 

of the system on diverse outdoor scenes are presented in 

section V. Last section includes a few concluding remarks. 

II. SOV SYSTEM ARCHITECTURE  

The SoV system works by acquiring 3D information from 

the environment using color and depth sensors, together with 

an Inertial Measurement Unit (IMU) device that allows 

recovering the orientation of the head and cameras. The 

acquisition hardware is placed onto a rigid structure attached 

to a headgear. In order to work in both indoor and outdoor 

environments, and irrespective of the illumination conditions, 

the 3D acquisition system employs two different types of 

depth sensors: a stereo RGB camera with configurable 

baseline (LI-OV580 from Leopard Imaging) for outdoor, and a 

Depth-of-Field camera (Structure Sensor PS1080 from 

Occipital) for indoor and low light image capture. The system 

consumes different types of 3D streams, stereo, depth or a 

fusion of both, depending on the used and environment 

(indoor, outdoor, low light, bright sunshine). Moreover, it 

employs different 3D approaches to deal with the specific 

structure and composition of environments. The 3D 

processing subsystem performs a 3D reconstruction of the 

sensed environment and segmentation into objects of interest. 

Next, the system builds a custom audio and/or haptic model of 

the 3D scene, which is then rendered to the user by means of 

hear-through headphones and a custom-made haptic belt, 

respectively. The SoV software runs on a portable computer 

carried in a custom made backpack with cooling facilities.  

This paper considers the 3D processing module for 

outdoor environments, based on the system’s stereo stream. 

The workflow is illustrated in Fig.1. The left and right images 

acquired from the stereo camera are rectified and used to 

compute the depth based on stereo correspondence, via the 

Elas algorithm [9]. Next, a 3D reconstruction of the 

environment is built based on the depth and color. The 

reconstruction consists in a global 3D point cloud obtained by 

incrementally adding the 3D representations of the individual 

frames, based on camera motion estimation. A confidence 

measure is associated to each 3D point forming the global 

model. This confidence depends on the number of frames in 

which the points could be tracked, i.e., the point was in the 

sensor's field of view and the disparity computation algorithm 

could provide a 3D measurement for it. The estimation of the 

ground is solved with a fast 2D approach [10], which 

combines information about camera orientation from IMU and 

camera motion estimation. 

 

Fig. 1. The subsystems of SoV used for solving the SS. 

III. FEATURE EXTRACTOR 

The classifier is designed to work on feature vectors 

describing the superpixels. The superpixels are depicted in the 

color image converted to Lab map, by delimitating uniformly 

colored regions via SLIC algorithm [11]. This implicitly offers 

a compact representation of the image, which should be 

augmented with additional features, as long as standalone 

color-based features are insufficiently eloquent for 

outdoor/indoor scenes. In this context, the feature extractor 
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also considers features based on the reconstructed 3D point 

cloud, by only taking the confident measurements, i.e. those 

which could be tracked along a minimum number of frames. 

Each superpixel is characterized by seven features, defined 

as follows: [F1] - the orientation of the superpixel relative to 

the ground, indicated by the cosine between the normal to 

ground and the normal to the closest plane approximation of 

the superpixel; [F2] - the average height above the ground; 

[F3] - the local planarity, i.e. the distance between the surface 

of the superpixel and its closest plane approximation; [F4] - 

the average neighbor planarity, i.e. the mean planarity of its 

neighbor superpixels; [F5] and [F6] - the average colors 

computed in the Lab map for a and b layers, respectively; 

[F7] - the average depth. Here, [F1] - [F4] implicitly embed 

some information from the previous frames, as well as 

information from other superpixels in the current frame, which 

helps for an accurate and robust SS. A robust classification is 

needed, as some feature values could result less precise due to 

the displacement of the camera. 

IV. THE MULTI-LAYER CLASSIFIER 

The design of the classifier is based on a set of images 

relevant for the classification problem, �� � ���	|	� � 1, . . , �
, 
and the set of superpixels depicted from them, �� �
��� 	�	∀	� � 1, . . , �, ∃�� ∈ ��		�. �.		�� ⊂ ��
. The training data 

set reflects some superpixels of ��, well-balanced between 

classes, randomly selected from several representative images 

of ��. The validation is done for all the other superpixels, i.e. 

for superpixels belonging both to images used and ignored 

during training. Some annotations indicate the desired classes 

for all the superpixels of ��, thus making possible a supervised 

training of the classifier, as well as the monitoring of 

misclassifications during the experiments. Targeted labels are 

stored at superpixel-level, as the corresponding segmentation 

precision is suitable for this application.  

 
Fig. 2. The structure of the multi-layer classifier. SS can stop after each layer. 

Label correction in the first two layers is also optional.  

Let �� � ���	|	� � 1, . . , �
 be the set of classes. 

Here,	� � 0 indicates the undecided class. This class could be 

obtained if the confidence level in any other class is very 

small, if the classifier has close high confidence in more than 

one class, or if the classification was skipped because the 

features of the superpixel could not be computed with an 

adequate confidence. As in any classification problem, one 

can expect that some classes are more difficult to distinguish, 

thus leading to frequent confusions between them and/or many 

undecided results. Forcing the classifier to learn all these 

classes in one step complicates the design and increases the 

risk of obtaining inconvenient overall accuracy/recall 

performance. The close classes could be depicted by analyzing 

the distribution of features in the training data set. 

In this regard, a supplementary layer was introduced in the 

classifier. The groups of hardly separable classes are depicted 

and �� is split in several corresponding disjoint subsets,  

�� � ⋃ #$
%&

%' , (1) 

with #$
% ( ∅, ∀	*	and #$

% ⋂#$
% � ∅ , ∀� ( *, with	�, * �

1,… , 1. Here, #$
%
, indicates a group of hardly separable classes 

and #$ � �� 
 is reserved for the undecided class. Because the 

classification is allowed to stop after the first layer, the classes 

of a group should be also semantically close, w. r. t. to the 

future guiding decisions. 

The first two layers of the multi-layered classifier 

architecture (Fig. 2) result from (1). More precisely, the first 

layer ([CL1] in Fig. 2) assigns a label from 1 to J, indicating 

the group of classes to which the superpixel belongs. 

Afterwards, classification is refined in the second layer 

([CL2]), where a separate classifier is designed for each group 

#$
%
, with		* � 2, … 1 and �#$

%� 3 1; here |∙|	specifies the size of a 

set. As consequence, any superpixel labeled with j >1 by the 

first layer calls for a supplementary classification in the 

second layer, if �#$
%� 3 1. If �#$

%� � 1, the second layer must 

only map the label j into the corresponding label from �� 

Random forests (RF) are considered for [CL1] and [CL2]. 

Because each tree is built according to a random subset of 

samples and features, RF can accept a large variety of 

instances for each class, while being quite insensitive to 

outliers or irrelevant attributes. Also, RF allows a fast 

evaluation, in agreement with the real-time constraints of this 

application. The voting scores indicating the confidence in the 

resulted class are useful for label correction and guidance. 

Two strategies working at superpixel or pixel level are 

proposed for correcting the labels in the first two layers ([LC] 

in Fig. 2). They aim improving the homogeneity of the labels. 

Both procedures analyze the neighbor labels in order to decide 

if a change is necessary. Supplementary corrections are also 

possible by means of the classifier suggested in the last layer, 

which is devoted to label correction performed at object level 

([CObj]). For this classifier, the octo-connected pixels of the 

segmented image are separated into objects and a single label 

is managed for all the superpixels of an object. Unlike the 

correction procedures enabled in the first two layers, this 

classifier is not limited to change a label into another neighbor 

label. However, [CObj] cannot split the existing objects; 

hence, if some regions of the image are incorrectly merged by 

[CL], they remained merged after [CObj]. All the correction 

algorithms should have only a minor influence, as the main 

role in labeling must be assigned to classification. 

[CObj] is an RF using the following features extracted at 

object level: the mean planarity, the minimum and the 

maximum height from ground, the minimum and the 

maximum depth, the mean and the difference between the 
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maxim and the minimum color intensity obtained in the last 

two layers of the LAB. In order to prevent incorrect 

relabeling, the object-level features are extracted only for the 

objects with enough valid pixels and a relabeling provided by 

[CObj] is accepted only if the confidence in the new label is 

higher than a threshold (TH) and the confidence shown by 

[CL]. The small objects ignored by [CObj] could be corrected 

via [LC], or simply ignored in the next decisions. By working 

at object-level, [CObj] implicitly analyses larger regions than 

[CL]. Therefore, the confidence scores provide valuable 

additional information for the future decisions.  

Different runtime policies could be used in the multilayer 

classifier for preventing the violation of real- time constraints, 

whenever SoV faces a computational overloading: work only 

for the superpixels of the close objects (i.e. placed on the 

bottom of the acquired image); skip some intermediary 

frames, especially when the speed of the assisted person is 

very small and/or the most recent results indicate with high 

confidence the absence of any mobile objects or danger; work 

only with one or two layers of the classifier and/or disable the 

corrections in the first two layers. 

V. LABEL CORRECTION IN THE FIRST TWO LAYERS 

As explained before, the label corrections in the first two 

layers are based on analyzing the neighbor labels found in the 

segmented image. LC-GC supports corrections at pixel level, 

via the graph cut algorithm. Mainly, graph cut searches for a 

trusty labeling which ensures a good homogeneity of the 

segmented image, by minimizing the following energy: 

5(�) � ∑ 5$(9)	:∈� +∑ ∑ 5:�< (9):∈� , (2) 

where, 5$(9) specifies the lack of confidence in the class c, 

assigned to the pixel p, while ∑ 5:�< (9) describes the 

heterogeneity of the labels around p. Here, 5:� indicates the 

variations of the label in the q
th

 clique formed from p; a clique 

is a sequence of neighbor pixels, depicted according to a 

maximum admitted length (here, length 3).  

In this paper, several configurations of the energy terms 

are proposed, defined in relation to the most desired 

corrections and the particularities of the RF classifier. Firstly, 

5$(9) is designed to use the available voting scores: 5$(9) �
1 − >?$(9), where >?$(9) is the confidence level for assigning 

the class c to the superpixel including p, i.e. the ratio of trees 

voting for c. As the ratios for all the potential classes have 

been already computed by RF, they can be directly used after 

any relabeling. Commonly, 5$(9) uses the distance to the 

average values of the features resulted for the samples of c, 

but this involves some extra computational load for updating 

the averages after each replacement step.  

Secondly, different spatial correction strategies are 

introduced via convenient settings of the cue parameters, i.e. 

the weights used in the second energy term of (2) for each 

edge of a clique. The available alternate configurations permit: 

i) intensifying the corrections in the neighborhood of the 

impaired user (where details are necessary), by increasing the 

cue weights on the rest of the image; ii) encouraging the use of 

trustier labels, @(9) � 1 − >?$(9), where @(9)	indicates the 

cue associated to the pixel p; iii) encouraging the deletion of 

small objects: @(9) � AB(9), with AB(9) � CD ∙
A(9)/max:∈� A(9), where A(9) is the area of the segmented 

object to which the pixel p belongs and CD is a weighting 

parameter meant to intensify the elimination of very small 

objects; here CD= 1 for the objects larger than average and the 

same CD < 1 is set for all the objects smaller than average.  

LC-GC is expected to provide smooth separations between 

objects. However this correction is suitable for the 2
nd

 layer, 

because multiple labels could be assigned in a single 

superpixel, thus disturbing the connections with the feature 

vectors. Also, being NP-hard relative to the number of classes, 

its real-time performance is acceptable only if a few categories 

of objects are considered. In this context, correction is 

extended with a supplementary alternate procedure working at 

superpixel level, in full compatibility with the first two layers. 

LC-MV uses a majority voting for providing a fast elimination 

of small objects. Around any object with the area smaller than 

a predefined threshold, a dilated contour is drawn and all its 

labels are put in a list, denoted LA. Then, LA is reduced to LB, 

by excluding the labels for the undecided class and the invalid 

superpixels. Whenever the replacement is considered safe, the 

most frequent label of the (non-empty) LB is assigned to all 

the superpixels of the object. The validation of the corrections 

may work with or without the confidence scores given by the 

classifier. When the confidence scores are ignored, a new label 

is accepted only if the majority label is supported by a 

reasonable ratio of valid pixels around the object, i.e.: 

|JK| 3 	 LM ∙ 	 |JA|, LM ∈ (0,1) − here, LM � 0.2. (3) 

This validation is refined if the confidence scores are taken 

into account. The mean confidence of the new label, computed 

w. r. t. the pixels belonging to the contour of the object 

(>?PPPP�QR), is compared with the mean confidence of the current 

label, resulted w .r. t. the pixels of the object (>?PPPPSTU), in order 

to decide if the replacement is safe. As mentioned before, the 

confidence levels result from the voting scores obtained by 

RF. If the new label is trustier than the current one (>?PPPP�QR 3
>?PPPPSTU), the validation condition is relaxed, by enabling the 

replacement of any extremely small object. Also, a 

significantly trustier new label (>?PPPPSTU < 0.8>?PPPP�QR) is accepted 

for a smaller ratio in (3), i.e. for LM → 0.9LM . 

VI. EXPERIMENTAL RESULTS 

The experimental verifications have been done for outdoor 

scenes acquired with the SoV. Many frames pose difficulties 

to SS, because they include uneven ground, as well as a large 

variety of static and moving obstacles (buildings, poles, 

benches, fences, cars, trees etc.) - for some regions the classes 

being quite unclear even for a human-based annotation. The 

training data set was formed with valid superpixels randomly 

selected from 60% of the images. Given the common 

appearances of the street scenes, expected to include more 

superpixels from a few classes, the training data set is 

generated after analyzing the distribution of superpixels per 

classes. In this regard, a threshold is set to: 
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YℎL[ � 1.5 min
^' ,.._,

`a(^)bc.d_ ∑ `a(^)e
fgh

�i(�) 
(4) 

where M denotes the number of targeted classes and Ns(i) 

specifies the number of samples belonging to the i
th

 class. If 

�j(�) 3 YℎL[, then YℎL[ random samples are selected from 

the class; otherwise all the samples of the class included the 

training images are used. The validation data set comprises the 

superpixels remaining in the training images from the highly 

populated classes, as well as superpixels from the images 

unused for the construction of the training data set - in this 

case, about 47% of the available samples. 

As RF accepts any range of attributes without ill 

conditioning problems, the features could be kept unscaled. 

The correlation analysis indicates higher linear dependency 

between [F1] and [F2] (as, usually, the superpixels from big 

heights have a vertical posture) and between [F3] and [F7] (as 

most far objects look flat). The small correlations between 

[F3] and all the other features motivate the use of the average 

neighbor planarity as attribute. 

Firstly, the two-layer classification and the correction 

algorithms introduced in the previous sections are separately 

examined, for demonstrating their role. Lastly, the overall 

performance is investigated on several integrating 

configurations. The performance of a two-layer classification 

is discussed vs. a single-layer one (#2-#3 vs. #1 in Table I). In 

this attempt, the classification is solved for � � 6	(i. e., 

undecided [1], ground [2], small static objects [3], cars [5], tall 

thin objects [4], tall large objects [6]). For the two-layer 

classification, two configurations are considered, namely V1 

with four subsets – undecided, ground, small objects (static or 

cars), tall objects (large or thin), 

(�� � �1
⋃�2
⋃�3,5
⋃�4,6
) and V2 with three subsets - 

undecided, ground, objects (�� � �1
⋃�2
⋃�3,4,5,6
). Both 

separations allows a premature stop of the classification after 

the first layer, as desired by design. Also, V1 and V2 are 

motivated by Wilcoxon rank sum tests performed separately 

for each feature and any pair of classes, in order to verify the 

hypotehsis of equal median, while considering that [F1] and 

[F2] are among the most influential features in this 

classification problem, as shown by their quite large 

correlation with the targeted classes. 

RFs are designed with 100 trees, based on a preliminary 

analysis of the misclassifications generated by a one-layer 

classifier with different number of trees. Because RF involves 

stochastic design procedures, each configuration is run for 5 

trials and the best result is stored for comparison. All the 

experimental configurations lead to 0 errors on training. On 

testing, the best results were achieved by the two-layer 

classifiers. V2 offers slightly worse results than V1 (#3 vs. 

#2), perhaps because it passes significant charges to a single 

classifier in the 2
nd

 layer. Wilcoxon rank sum tests indicate 

significant differences between the results obtained for the 

configurations listed in Table I, thus validating the use of a 

two-layer classifier. A supplementary investigation of the 

misclassifications showed that they do not trigger dangerous 

guiding decisions, because they generally refer to far objects 

or less significant details (e.g. branches of trees associated 

with the building behind, ground around very close cars 

associated to cars in a parking area, bottom boundaries of 

some buildings not very precisely delimited from an uneven 

ground). An example is illustrated in Fig. 3. 

For a fair comparison, the correction algorithms are 

separately applied after a single-layer classification, using the 

same RF for producing the segmented images; also, one of the 

worst classifier is chosen from the previous tests, in order to 

ensure a working context for corrections as diverse as possible 

- with 389 wrongly labeled superpixels (from 6205 totally), 

i.e. 403890 pixels for the whole testing data set. Because LC-

GC works at pixel-level, the results are compared by counting 

the number of pixels with good corrections (NB) and the 

number of pixels changed to incorrect labels (NW). The testing 

configurations are specified in Table II.  

For a faster correction, LC-GC is limited to 3 iterations. As 

expected, LC-GC improves the homogeneity of the labels by 

also relabeling some boundary pixels of the objects, correctly 

labeled by [CL] (annotations are stored only at superpixel 

level). These extra changes explain the large values of NW, 

however they do not impede the future guidance. Mainly, the 

useful corrections ensured by LC-GC refer to the deletion of 

the small objects. LC-GC was tested for all the proposed 

configurations, with different parameters. LC-GC-i) #7 and #8 

intensify the corrections of the labels from the central part of 

the image (outside a border of size SB). As the upper pixels 

are usually invalid, this correction ignores especially the left 

and right far objects. On the contrary, #9 corrects mainly these 

peripheral objects. For most images, the central region 

includes small residual objects resulted at the boundary 

between valid and invalid pixels, hence #8 and #7 can 

illustrate the undesired effect produced by too small cues 

weights when working on regions with many small objects. In 

these cases, LC-GC-i triggers many corrections, but not all of 

them useful for a classification defined at superpixel level. For 

these regions, increased cue weights are suitable. The fewest 

errors produced by LC-GC are obtained when the cue weights 

are set in relation to the confidence scores (LC-GC-ii, i.e. #10) 

or the area of the object (LC-GC–iii, i.e. #11-13). These 

configurations are also safer than the classic LC-GC #6 (using 

unit cue weights). The influence of kA is marginal for LC-GC-

iii, perhaps due to the distribution of objects’ area.  

The confidence scores are also useful in the case of LC-

MV (#14-16 vs. #17-19). However, LC-MV should be limited 

to work on small objects, only (#14 vs. #15 and #15 vs. #17). 

As expected, accepting the new majority neighbor label only if 

many valid pixels are found around the object is useful for 

validating safer corrections (#14 vs. #16 and #15 vs. #18). 

Like LC-GC, [LC-MV] mainly eliminates the small objects. 

The best results were obtained for [CObj] working with 

big validation thresholds. Given the design of [CObj], setting a 

large TH is a natural requirement. As long as [CObj] assigns 

the new labels by classification, without exploring the 

neighbors, any potentially incorrect labels could significantly 

change the meaning of the segmented image. Hence, the 

results of [CObj] should be validated only if a very high 
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confidence level is obtained (#21, 22). Some results are 

presented in Fig. 4 for #10, #15 and #22 - which provide the 

safest corrections. For these strategies the labels are mainly 

decided by [CL] (which is more robust by design) while 

accepting that in some images only a few errors are corrected.  

The last experiments considered different combinations 

between LC-MV and [CObj], for single-layer (Table II -#24) 

and two-layer classifiers (Table I - #4 and #5). As shown in 

Table I and II, they generate fewer mistakes at recall than the 

configurations without corrections. The complexity order of 

corrections is mostly influenced by the resolution of the 

images (which is reasonably small, i.e. 388 x 796). In all the 

configurations, the RFs includes only short trees (with a 

maximum depth 24 for [CL] and 15 for [CObj]), thus 

obtaining very fast RF’s evaluations.  

TABLE I.  EXPERIMENTAL RESULTS – CLASSIFICATION 

# Classifier Correction No. of errors 

[superpixels] 

Mistakes per classes  

[training and testing]  

1 1 layer No 339 class 2 – 136, class 3 – 64; class 

4 -99, class 5 – 18, class 6 -22  

2 2 layers, 

with V1 

No 266 class 2 -79, class 3 - 43, class 4 

– 139, class 5 – 4, class 6 – 1 

3 2 layers, 

with V2 

No 274 class 2 - 127; class 3 - 44, class 

4 -75, class 5 - 12, class 6 - 16  

4 2 layers, 

with V1 

[CObj]-#22 246 class 2 -71, class 3 - 43; class 4 

- 112, class 5 – 18, class 6 – 2 

5 2 layers, 

with V1 

LC-MV-#15 

& [CObj]-#22 

235 class 2 -63, class 3 - 41; class 4 

- 99, class 5 – 30, class 6 – 2 

TABLE II.  LABEL CORRECTION [TRAINING AND VALIDATION] 

# AnojL�Yℎ� p�L��qYqLi Corrected 

[NB] 

New errors 

[NW] 

6 LC-GC - 31039 16946 

7 1LC-GC i) VAL=100, SB=20 35665 40723 

8 VAL=100, SB=40 44441 73967 

9 VAL=0.1, SB=20 31342 16557 

10 LC-GC ii) - 26024 13444 

11 
2LC-GC iii) CD � 100 23171 11629 

12 CD � 10 23085 11672 

13 CD � 1 23042 11672 

14 3LC-MV 

WOCF 

MinA=1500, rv = 1/5 36872 36563 

15 MinA=3000, rv  = 1/5 63033 71749 

16 MinA=1500, rv = 1/3 31495 28849 

15 3LC-MV –

WCF 

MinA=1500, rv = 1/5 43414 41296 

17 MinA=3000, rv  = 1/5 73259 79601 

18 MinA=1500, rv = 1/3 39556 34017 

19 4[Cobj]  MA=500, TH=0.5 27962 6716 

20 MA=500, TH=0.6 27316 5701 

21 MA=500, TH=0.7 23023 2919 

22 MA=500, TH=0.8 13920 487 

23 MA=750, TH=0.6 25558 4893 

24 
[CObj]-#22 & 

LC-MV-#15 

MA=500, TH=0.8 

MinA=1500, rv = 1/5 
33437 0 

1
LC-GC-i) is applied with cue weights equal to VAL, on a border of size SB;  

2For 
LC-GC-ii),the kA indicated here is used for the objects smaller than average; 

3 
LC-MV is applied without confidence score (WOCF) or with confidence scores 

(WCF), for objects larger than MinA, by working on a contour of WO width;  
4
[Cobj] works on objects larger than MA, according to the validation threshold TH. 

VII. CONCLUSIONS 

This paper proposes a multi-layer classifier with correction 

algorithms for semantic segmentation. The solution is built for 

a wearable assistive system helping the visually impaired 

persons. The street scene is described at superpixel level by 

color and 3D features which integrate information from 

temporal and spatial vicinities. The classification task is split 

into RFs organized in two layers. Optional minor relabeling is 

provided by means of graph cut customizations using different 

polices for the cue parameters and a voting correction 

algorithm. Additionally, correction could be done via a 

classification working with object-level features. 

The experimental results indicate that the two-layer 

classification is more effective than a single-layer one. Also 

safe corrections could be provided by all the suggested 

procedures. Future research will investigate the possibility of 

fusing the correction algorithms via adaptive mechanism, by 

taking into account the layout of the segmented image and the 

confidence scores, in support of a robust and safe relabeling. 

 
Fig. 3. Example of segmented image - testing frame (#2) 

 

 
Fig. 4. Examples of corrections on a testing frame (# 22, #15, #10 - 

segmentation (left), improvements (right) and errors (middle) after correction) 
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